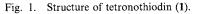
# TETRONOTHIODIN, A NOVEL CHOLECYSTOKININ TYPE-B RECEPTOR ANTAGONIST PRODUCED BY *Streptomyces* sp. NR0489

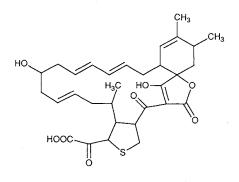
# II. ISOLATION, CHARACTERIZATION AND BIOLOGICAL ACTIVITIES

Tatsuo Ohtsuka, Hiromichi Kotaki, Noboru Nakayama, Yoshiko Itezono, Nobuo Shimma, Tsutomu Kudoh, Toshikazu Kuwahara, Mikio Arisawa and Kazuteru Yokose\*

> Nippon Roche Research Center, 200 Kajiwara, Kamakura 247, Japan

### HARUO SETO


### Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan


### (Received for publication May 15, 1992)

A novel cholecystokinin type-B receptor antagonist named tetronothiodin has been isolated by column chromatography and preparative HPLC from the fermentation broth of *Streptomyces* sp. NR0489. Tetronothiodin inhibited the binding of CCK<sub>8</sub> (*C*-terminal octapeptide of cholecystokinin) to rat cerebral cortex membranes (CCK type-B receptors) with an IC<sub>50</sub> of 3.6 nM, whereas it did not inhibit CCK<sub>8</sub> binding to rat pancreatic membranes (CCK type-A receptors). It also inhibited CCK<sub>8</sub> induced Ca<sup>2+</sup> mobilization in GH3 cells, a rat anterior pituitary cell line, but was without effect on the basal cytosolic Ca<sup>2+</sup> concentration. This finding indicated tetronothiodin was an antagonist of CCK type-B receptors.

Cholecystokinin (CCK) is a hormonal regulator of pancreatic secretion<sup>1)</sup> as well as gallbladder contraction<sup>2)</sup> and gut motility<sup>3)</sup>. It has also been proposed to act as a neurotransmitter in the central nervous system<sup>4)</sup>. CCK type-B (CCK-B) receptors are suggested to be related to appetite<sup>5)</sup>, pain<sup>6,7)</sup> and anxiety<sup>8,9)</sup>. Some CCK-B receptor antagonists increased food intake<sup>5)</sup>, enhanced morphine analgesia<sup>6,7)</sup> and reduced anxiety<sup>8,9)</sup> in rats. However, physiological and pharmacological roles of CCK-B receptors are not yet fully understood in part because of the shortage of potent and specific CCK-B receptor antagonists. To obtain structurally unique and specific CCK-B receptor antagonists, we screened microbial

metabolites by employing a binding assay method in which rat cerebral cortex membranes and <sup>125</sup>I labeled Bolton-Hunter CCK<sub>8</sub> ([<sup>125</sup>I]-CCK<sub>8</sub>) were used as the receptors and the radioligand, respectively. In this screening program, we discovered a novel CCK-B receptor antagonist named tetronothiodin (1) from the culture broth of *Streptomyces* sp. NR0489, and determined the structure to be a macrocyclic compound containing an  $\alpha$ acyltetronic acid and a tetrahydrothiophene ring (Fig. 1). A preliminary communication of this work





has been reported<sup>10)</sup>. Details of the taxonomy and fermentation of 1 are reported in the preceding paper<sup>11)</sup>. The structural elucidation study of 1 is reported in the succeeding paper<sup>12)</sup> in detail. In the present paper, we describe the isolation, physico-chemical characterization and biological activities of 1.

# Isolation

Isolation of 1 was carried out by monitoring the inhibitory activity against <sup>125</sup>I labeled Bolton-Hunter CCK<sub>8</sub> ([<sup>125</sup>I]-CCK<sub>8</sub>) binding to rat cerebral cortex membranes. The isolation procedure of 1 is outlined in Fig. 2. After cultivation of the producing organism for ten days in 50-liter jar fermenters by the procedure described in the preceding paper<sup>11</sup>), the mycelium was removed by centrifugation. The broth supernatant (181 liters) was adjusted to pH 7 with  $6 \times$  HCl and applied to a column ( $12 \times 100 \text{ cm}$ ) of Diaion HP-21 (Mitsubishi Chemical Industries). The column was washed with water (25 liters) and 10% aqueous acetone (50 liters), and the active principle was eluted with 50% aqueous acetone (60 liters). The active eluate was concentrated to about 15 liters under reduced pressure and extracted with ethyl acetate ( $25 \text{ liters} \times 2$ ) at pH 2. The organic layer was dried over anhydrous sodium sulfate and concentrated to 3.5 liters under reduced pressure. This solution was back-extracted with water ( $1.5 \text{ liters} \times 2$ ) at pH 7.5. The water layer was concentrated to 1.5 liters under reduced pressure. The concentrate was applied to a column ( $5 \times 16 \text{ cm}$ ) of QAE Sephadex A-25 (Pharmacia Fine Chemicals) which was developed stepwise with water

Fig. 2. Isolation procedure of tetronothiodin.

```
Broth supernatant (181 liters)
```

adjusted to pH 7 Diaion HP-21 column chromatoraphy washed with water and 10% aqueous acetone eluted with 50% aqueous acetone

EtOAc extract (pH 2)

concd under reduced pressure

Back-extract (pH 7.5)

concd under reduced pressure QAE Sephadex A-25 washed with water eluted with NaCl (0.2~0.5 M)

```
EtOAc extract (pH 2)
```

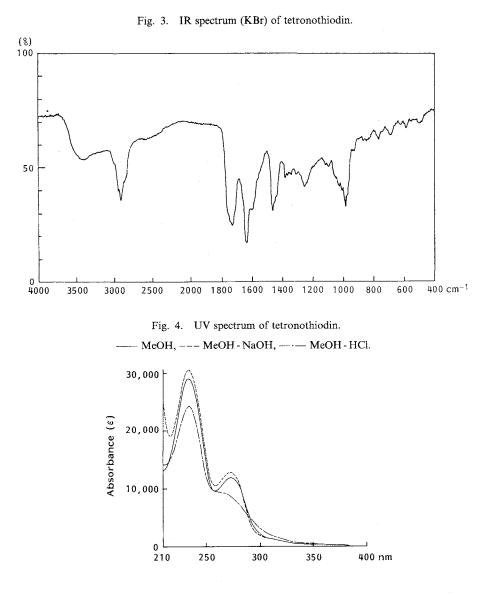
concd under reduced pressure Sephadex LH-20 column chromatography eluted with MeOH concd under reduced pressure Preparative HPLC (C<sub>8</sub> reversed phase silica gel column) eluted with MeOH - phosphate buffer (pH 2.2) (6:4) concd under reduced pressure

EtOAc extract (pH 2.5)

concd under reduced pressure

Tetronothiodin (240 mg)

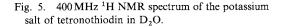
(1 liter) and NaCl solutions (0.2, 0.3 and 0.5  $\times$ ; 3.5 liters each). The active eluate (0.3 and 0.5  $\times$  NaCl fractions) was extracted with ethyl acetate (4 liters  $\times$  2) at pH 2. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give an oily residue, which was chromatographed on a Sephadex LH-20 column (3.2  $\times$  120 cm) developed with MeOH. The active eluate was concentrated under reduced pressure and purified by preparative HPLC over a C<sub>8</sub> reversed-phase silica gel column (YMC-Pack,

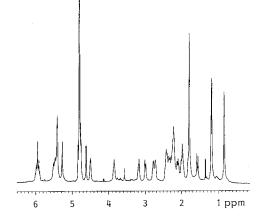

Table 1. Physico-chemical properties of 1.

| Appearance                                          | Pale brown powder                                |
|-----------------------------------------------------|--------------------------------------------------|
| Molecular formula                                   | C <sub>31</sub> H <sub>38</sub> O <sub>8</sub> S |
| FAB-MS (positive ion)                               | $593 (M + Na)^+, 609 (M + K)^+$                  |
| HRFAB-MS                                            | 569.2237 (M-H) <sup>-</sup>                      |
| (negative ion)                                      | Calcd: 569.2210                                  |
| UV $\lambda_{\rm max}^{\rm MeOH}$ nm ( $\epsilon$ ) | 233 (29,900), 273 (12,200)                       |
| $\lambda_{\max}^{MeOH-NaOH}$                        | 234 (31,000), 271 (13,500)                       |
| λ MeOH-HCl<br>max                                   | 234 (25,000), 269 (sh, 9,800)                    |
| IR $v_{max}$ (KBr) cm <sup>-1</sup>                 | 3700~2300 (br), 1760 (sh),                       |
|                                                     | 1728, 1638, 1600                                 |
| $[\alpha]_{\rm D}^{20}$                             | $-56.9^{\circ}$ (c 1.1, MeOH)                    |
| Rf (Silica gel 60 F <sub>254</sub> )                | 0.69 (CHCl <sub>3</sub> - MeOH - 28%             |
|                                                     | aqueous ammonia, 4:4:1)                          |
| Solubility                                          | Soluble in DMSO, MeOH,<br>THF                    |
|                                                     | Insoluble in hexane, ether,                      |
|                                                     | CHCl <sub>3</sub> , H <sub>2</sub> O             |

 $30 \times 250$  mm; YMC Co., Ltd.) with MeOH-0.1 M phosphate buffer (pH 2.2) (6:4) at a flow rate of 43 ml/minute. The active fraction (retention time, 13 minutes) was concentrated and extracted with ethyl acetate at pH 2.5. The organic layer was concentrated to dryness under reduced pressure to give 1 (240 mg) as a pale brown powder.

# Physico-chemical Characteristics


The physico-chemical properties of 1 are summarized in Table 1. The isolation procedure of 1, extraction with ethyl acetate at pH 2 and back-extraction with water at pH 7.5, indicated its acidic nature. 1 was soluble in MeOH, THF, DMSO and alkaline water but insoluble in ether, chloroform, hexane and water. 1 was positive to FeCl<sub>3</sub>, vanillin-H<sub>2</sub>SO<sub>4</sub> and iodine reactions. The free form of 1 was unstable in solution; it gradually decomposed during NMR experiments for two weeks in DMSO- $d_6$  or CD<sub>3</sub>OD. Its alkaline metal salts were stable for at least five months under the same experimental conditions. The IR (Fig. 3) absorption bands at 3000~2300 and 1728 cm<sup>-1</sup> suggested the presence of a carboxylic acid. A

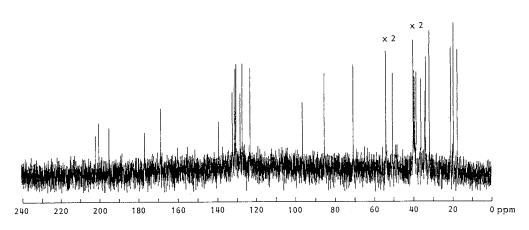



γ-lactone function was also suggested by the shoulder band at  $1760 \text{ cm}^{-1}$  (KBr), which clearly separated from a large carbonyl band ( $1728 \text{ cm}^{-1}$ ) in THF. The UV spectrum (Fig. 4) in MeOH showed absorption maxima at 233 and 273 nm and hypochromic effect was observed in acidic methanol. These absorption maxima were attributable to an α-acyltetronic acid chromophore<sup>13,14</sup>) with the former absorption maximum being partly due to a diene chromophore. The molecular formula ( $C_{31}H_{38}O_8S$ ) determination was based on positive ion FAB-MS and negative ion HRFAB-MS data [569.2237, calcd for (M – H,  $C_{31}H_{37}O_8S$ )<sup>-</sup> 569.2210]. The molecular formula was supported by the analyses of the <sup>1</sup>H NMR spectrum (Fig. 5) and the <sup>13</sup>C NMR spectrum (Fig. 6) showing 31 carbon signals, and by qualitative analysis for sulfur<sup>15</sup>). These physico-chemical properties indicated that the structure of 1 was different from known CCK receptor antagonists of microbial origin such as virginiamycin M<sub>1</sub> analogues<sup>16</sup>), anthramycin<sup>17</sup> and asperlicin<sup>18</sup>). The chromophore, α-acyltetronic acid, is commonly contained in some antibiotics such as kijanimicin<sup>13</sup>), tetrocarcins<sup>14</sup> and MM 46115<sup>19</sup>). However 1 was different from these antibiotics in terms of containing a sulfur atom in the molecule.

### **Biological Activities**

The inhibitory activities against the binding of  $[^{125}I]$ -CCK<sub>8</sub> to CCK-A and CCK-B receptors were






observed by the following procedures. Test samples were incubated at 23°C with  $[^{125}I]$ -CCK<sub>8</sub> and rat pancreatic membranes (CCK-A receptors) or rat cerebral cortex membranes (CCK-B receptors) in a

Table 2. Inhibition of  $[^{125}I]$ -CCK<sub>8</sub> binding to CCK-A (from rat pancreas) and CCK-B (from rat cerebral cortex) receptors.

| IC <sub>50</sub> (nм) |                                         |
|-----------------------|-----------------------------------------|
| CCK-A                 | CCK-B                                   |
| >100,000              | 3.6                                     |
| 2,700                 | 9.2                                     |
| Not done              | 14                                      |
| 0.27                  | 1.2                                     |
|                       | CCK-A<br>> 100,000<br>2,700<br>Not done |

Fig. 6. 100 MHz  $^{13}$ C NMR spectrum of the potassium salt of tetronothiodin in D<sub>2</sub>O.



10 mm 2-(*N*-morpholino)ethanesulfonate buffer (pH 6.5) containing NaCl 130 mM, MgCl<sub>2</sub> 5 mM, bacitracin 0.02% and bovine serum albumin (0.2% and 0% for CCK-A and CCK-B receptors, respectively). After equilibrium was reached (120 minutes for CCK-A receptors or 20 minutes for CCK-B receptors), each mixture was filtered by a Durapore HVLP filter and the radioactivity of the filter was counted by an autogamma counter.

1 inhibited the binding of  $[^{125}I]$ -CCK<sub>8</sub> to CCK-B receptors on rat cerebral cortex membranes in a concentration dependent manner with an IC<sub>50</sub> of 3.6 nM (Table 2). The affinity to CCK-B receptors of 1 was three or four times more potent than those of L-365,260<sup>20)</sup> or CI-988<sup>9)</sup> known as potent and selective CCK-B receptor antagonists, and only three times less potent than the natural ligand CCK<sub>8</sub> (IC<sub>50</sub> = 1.2 nM). However 1 did not inhibit the binding of  $[^{125}I]$ -CCK<sub>8</sub> to rat pancreatic membranes (CCK-A receptors). The ratio of the affinity for CCK-A to CCK-B receptors of 1 was more than 27,000, which was 90-fold greater than the -A and -B affinity ratio of L-365,260 (300). 1 was thus revealed to be a highly selective binding inhibitor of CCK-B receptors.

GH3 cells were reported to express CCK-B receptors<sup>21</sup>). This fact was corroborated by our results that 1 inhibited CCK<sub>8</sub> binding to GH3 cells with an IC<sub>50</sub> of 4.2 nM, which was of the same order as that for brain CCK-B receptors. It had also been demonstrated that the intracellular Ca<sup>2+</sup> concentration ( $[Ca<sup>2+</sup>]_i$ ) in GH3 cells was increased by CCK<sub>8</sub> in a concentration dependent manner at 1 to 1,000 nM<sup>22</sup>) using the Fura-2 method<sup>23</sup>. CCK<sub>8</sub> (100 nM) transiently increased  $[Ca<sup>2+</sup>]_i$  from 448 nM (basal level) to 739 nM. This stimulation caused by 100 nM CCK<sub>8</sub> was 97% of the maximum stimulation obtained by the treatment with 1  $\mu$ M CCK<sub>8</sub>. The effect of 1 to this Ca<sup>2+</sup> mobilization was investigated by measuring  $[Ca<sup>2+</sup>]_i$  in GH3 cells. When GH3 cells were treated with 1 (1  $\mu$ M) one minute prior to the treatment of 100 nM CCK<sub>8</sub> which induced a submaximum increase of  $[Ca<sup>2+</sup>]_i$ , 1 inhibited this increase completely without affecting the basal level. This inhibitory activity was concentration dependent. At the concentration of 50 nM of CCK<sub>8</sub> which causes about 80% stimulation of the maximum  $[Ca<sup>2+</sup>]_i$  increase, pretreatments of GH3 cells with 1, 10, 100, and 1,000 nM of 1 inhibited the  $[Ca<sup>2+</sup>]_i$  increase by 12, 55, 70 and 93%, respectively. The IC<sub>50</sub> against the increase of  $[Ca<sup>2+</sup>]_i$  induced by 50 nM CCK<sub>8</sub> was 26 nM. These results indicate that 1 acted as an antagonist of CCK-B receptors on GH3 cells.

1, at concentrations up to  $9 \mu M$ , did not show cell growth inhibitory activity against HeLa cells. 1 was inactive against bacteria (*Bacillus subtilis*, *Micrococcus luteus* and *Escherichia coli*) and fungi (*Candida albicans*, *Aspergillus fumigatus*, *Trichophyton mentagrophytes* and *Pyricularia oryzae*) at concentrations up to  $450 \mu M$ .

## Discussion

The structure of 1 is completely different from natural CCK-B receptor antagonists (virginiamycin  $M_1$  analogues<sup>16</sup>) and anthramycin<sup>17</sup>) produced by *Streptomyces* sp.) and a CCK type-A receptor antagonist (asperlicin produced by *Aspergillus alliaceus*<sup>18</sup>)) of microbial origin. It is also different from the other CCK antagonists<sup>24</sup>: (1) cyclic nucleotides (dibutyryl cyclic GMP), (2) amino acids (proglumide, lorglumide and loxiglumide), (3) partial sequences and derivatives of the *C*-terminal heptapeptides of CCK (CCK-JMV-180), (4) benzodiazepines (devazepide and L-365,260) and (5) nonpeptide "peptoids" derived from fragments in the CCK molecule (CI-988). 1 is structurally related to some antibiotics such as kijanimicin<sup>13</sup>), tetrocarcins<sup>14</sup>) and MM 46115<sup>19</sup> in terms of the macrocyclic molecule containing an  $\alpha$ -acyltetronic acid chromophore. In contrast to these antibiotics, 1 is inactive against *Bacillus subtilis* and *Micrococcus luteus*.

A CCK-B receptor antagonist, L-365,260, increased food intake in rats<sup>5)</sup>. An anxiolytic activity<sup>8,9)</sup> and

enhancement of morphine analgesia<sup>6,7</sup>) by CCK-B receptor antagonists in rats were also demonstrated by L-365,260 and CI-988. The possibility of clinical application of CCK-B receptor antagonists was suggested by these studies. However, physiological and pharmacological roles of CCK-B receptors are not yet fully understood partly because of the shortage of potent and specific CCK-B receptor antagonists. 1 is a novel, potent and highly selective CCK-B receptor antagonist. It will be a useful tool for the investigation of the physiological and pharmacological roles of CCK-B receptors. Full details of the biological activities will be reported elsewhere<sup>25</sup>.

#### Acknowledgments

The authors thank Dr. IMHOF of F. Hoffmann-La Roche Research Center for kindly providing samples of L-365,260 and CI-988.

#### References

- JENSEN, R. T.; G. F. LEMP & J. D. GARDNER: Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J. Biol. Chem. 257: 5554~5559, 1982
- RYAN, J. & S. COHEN: Interaction of gastrin I, secretin, and cholecystokinin on gallbladder smooth muscle. Am. J. Physiol. 230: 553~556, 1976
- HUTCHISON, J. B. & G. J. DOCKRAY: Inhibition of the action of the closed of the guinea pig ileum myenteric plexus by dibutyryl cyclic guanosine monophosphate. Brain Research 202: 501 ~ 505, 1980
- 4) REHFELD, J. F.: Neuronal cholecystokinin: One or multiple transmitters?. J. Neurochem. 44: 1~10, 1985
- DOURISH, C. T.; W. RYCROFT & S. D. IVERSEN: Postponement of satiety by blockage of brain cholecystokinin (CCK-B) receptors. Science 245: 1509~1511, 1989
- 6) DOURISH, C. T.; M. F. O'NEIL, J. COUGHLAN, S. J. KITCHENER, D. HAWLEY & S. D. IVERSEN: The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur. J. Pharmacol. 176: 35~44, 1990
- 7) WIESENFELD-HALLIN, Z.; X.-J. XU, J. HUGHES, D. C. HORWELL & T. HÖKFELT: PD134308, a selective antagonist of cholecystokinin type B receptor, enhances the analgesic effect of morphine and synergistically interacts with intrathecal galanin to depress spinal nociceptive reflexes. Proc. Natl Acad. Sci. U.S.A. 87: 7105~7109, 1990
- 8) RAVARD, S. & C. T. DOURISH: Cholecystokinin and anxiety. Trends Pharmacol. Sci. 11: 271~273, 1990
- 9) HUGHES, J.; P. BODEN, B. COSTALL, A. DOMENEY, E. KELLY, D. C. HORWELL, J. C. HUNTER, R. D. PINNOCK & G. N. WOODRUFF: Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc. Natl. Acad. Sci. U.S.A. 87: 6728~6732, 1990
- OHTSUKA, T.; T. KUDOH, N. SHIMMA, H. KOTAKI, N. NAKAYAMA, Y. ITEZONO, N. FUJISAKI, J. WATANABE, K. YOKOSE & H. SETO: Tetronothiodin, a novel cholecystokinin type-B receptor antagonist produced by *Streptomyces* sp. J. Antibiotics 45: 140~143, 1992
- WATANABE, J.; N. FUJISAKI, K. FUJIMORI, Y. ANZAI, S. OSHIMA, T. SANO, T. OHTSUKA, K. WATANABE & T. OKUDA: Tetronothiodin, a novel cholecystokinin type-B receptor antagonist produced by *Streptomyces* sp. NR0489. I. Taxonomy, yield improvement and fermentation. J. Antibiotics 46: 1~10, 1993
- OHTSUKA, T.; N. NAKAYAMA, Y. ITEZONO, N. SHIMMA, T. KUWAHARA, K. YOKOSE & H. SETO: Tetronothiodin, a novel cholecystokinin type-B receptor antagonist produced by *Streptomyces* sp. NR0489. III. Structural elucidation. J. Antibiotics 46: 18~24, 1993
- 13) MALLAMS, A. K.; M. S. PUAR, R. R. ROSSMAN, A. T. MCPHAIL & R. D. MACFARLANE: Kijanimicin. 2. Structure and absolute stereochemistry of kijanimicin. J. Am. Chem. Soc. 103: 3940~3943, 1981
- 14) TAMAOKI, T.; M. KASAI, K. SHIRAHATA, S. OHKUBO, M. MORIMOTO, K. MINEURA, S. ISHII & F. TOMITA: Tetrocarcins, novel antitumor antibiotics. II. Isolation, characterization and antitumor activity. J. Antibiotics 33: 946~950, 1980
- 15) SHRINER, R. L.; R. C. FUSON & D. Y. CURTIN: Qualitative analysis for the elements. In Systematic Identification of Organic Compounds. 5th Ed. pp. 62~63, John Wiley and Sons, Inc., 1966
- 16) LAM, Y. K. T.; D. BOGEN, R. S. CHANG, K. A. FAUST, O. D. HENSENS, D. L. ZINK, C. D. SCHWARTZ, L. ZITANO, G. M. GARRITY, M. M. GAGLIARDI, S. A. CURRIE & H. B. WOODRUFF: Novel and potent gastrin and brain cholecystokinin antagonists from *Streptomyces olivaceus*. Taxonomy, fermentation, isolation, chemical conversions, and physico-chemical and biochemical properties. J. Antibiotics 44: 613~625, 1991
- 17) KUBOTA, K.; K. SUGAYA, Y. KOIZUMI & M. TODA: Cholecystokinin antagonism by anthramycin, a benzodiazepine antibiotic, in the central nervous system in mice. Brain Research 485: 62~66, 1989
- 18) GOETZ, M. A.; M. LOPEZ, R. L. MONAGHAN, R. S. L. CHANG, V. J. LOTTI & T. B. CHEN: Asperlicin, a novel non-peptidal cholecystokinin antagonist from *Aspergillus alliaceus*. Fermentation, isolation and biological

properties. J. Antibiotics 38: 1633~1637, 1985

- 19) ASHTON, R. J.; M. D. KENIG, K. LUK, D. N. PLANTEROSE & G. SCOTT-WOOD: MM 46115, a new antiviral antibiotic from *Actinomadura pelletieri*. Characteristics of the producing cultures, fermentation, isolation, physico-chemical and biological properties. J. Antibiotics 43: 1387~1393, 1990
- 20) BOCK, M. G.; R. M. DIPARDO, B. E. EVANS, K. E. RITTLE, W. L. WHITTER, D. F. VEBER, P. S. ANDERSON & R. M. FREIDINGER: Benzodiazepine gastrin and brain cholecystokinin receptor ligands: L-365,260. J. Med. Chem. 32: 13~16, 1989
- 21) TAKAMIYA, M.; H. YOSHIZAKI, A. HANAYAMA, H. NAGASE, T. KUDOH, T. KUWAHARA & M. ARISAWA: The presence of cholecystokinin B receptors in rat pituitary gland and GH3, a rat anterior pituitary tumor cell line. Jpn. J. Pharmacol. Suppl. I 55: 355, 1991
- 22) NAGASE, H.; T. KUWAHARA, T. KUDOH, H. YOSHIZAKI, M. TAKAMIYA, H. HANAYAMA & M. ARISAWA: Effect of cholecystokinin-8 on the intracellular Ca<sup>2+</sup> concentration in GH3, a rat anterior pituitary tumor cell line. Jpn. J. Pharmacol. Suppl. I 55: 115, 1991
- 23) GRYNKIEWICZ, G.; M. POENIE & R. Y. TSIEN: A new generation of  $Ca^{2+}$  indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440 ~ 3450, 1985
- 24) WOODRUFF, G. N. & J. HUGHES: Cholecystokinin antagonists. Annu. Rev. Pharmacol. Toxicol. 31: 469 ~ 501, 1991
- 25) KUWAHARA, T.; T. KUDOH, H. NAGASE, M. TAKAMIYA, A. NAKANO, T. OHTSUKA, H. YOSHIZAKI & M. ARISAWA: Tetronothiodin, a novel CCK<sub>B</sub> receptor ligand, antagonizes cholecystokinin-induced Ca<sup>2+</sup> mobilization in a pituitary cell line. Eur. J. Pharmacol. 221: 99~105, 1992